Publications

Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
J. A. Lin, S. Ament, M. Balandat, E. Bakshy
Bayesian Decision-making and Uncertainty Workshop at NeurIPS 2024

PDF BibTeX

Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes
J. A. Lin, S. Padhy, B. Mlodozeniec, J. Antorán, J. M. Hernández-Lobato
Advances in Neural Information Processing Systems 2024

PDF BibTeX

Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes
J. A. Lin, S. Padhy, B. Mlodozeniec, J. M. Hernández-Lobato
Advances in Approximate Bayesian Inference 2024

PDF BibTeX

Stochastic Gradient Descent for Gaussian Processes Done Right
J. A. Lin, S. Padhy, J. Antorán, A. Tripp, A. Terenin, C. Szepesvári, J. M. Hernández-Lobato, D. Janz
International Conference on Learning Representations 2024

PDF BibTeX

Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent
J. A. Lin, J. Antorán, S. Padhy, D. Janz, J. M. Hernández-Lobato, A. Terenin
Advances in Neural Information Processing Systems 2023 (Oral Presentation)

PDF BibTeX

Minimal Random Code Learning with Mean-KL Parameterization
J. A. Lin, G. Flamich, J. M. Hernández-Lobato
Neural Compression Workshop at ICML 2023

PDF BibTeX

Beyond Intuition, a Framework for Applying GPs to Real-World Data
K. Tazi, J. A. Lin, R. Viljoen, A. Gardner, T. John, H. Ge, R. E. Turner
Structured Probabilistic Inference & Generative Modeling Workshop at ICML 2023

PDF BibTeX

Online Laplace Model Selection Revisited
J. A. Lin, J. Antorán, J. M. Hernández-Lobato
Advances in Approximate Bayesian Inference 2023 (Contributed Talk)

PDF BibTeX

Function-Space Regularization for Deep Bayesian Classification
J. A. Lin, J. Watson, P. Klink, J. Peters
Advances in Approximate Bayesian Inference 2023

PDF BibTeX

Latent Derivative Bayesian Last Layer Networks
J. Watson, J. A. Lin, P. Klink, J. Pajarinen, J. Peters
International Conference on Artificial Intelligence and Statistics 2021

PDF BibTeX

Neural Linear Models with Functional Gaussian Process Priors
J. Watson, J. A. Lin, P. Klink, J. Peters
Advances in Approximate Bayesian Inference 2020

PDF BibTeX