Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure J. A. Lin, S. Ament, M. Balandat, E. Bakshy Bayesian Decision-making and Uncertainty Workshop at NeurIPS 2024
Improving Linear System Solvers for Hyperparameter Optimisation in Iterative Gaussian Processes J. A. Lin, S. Padhy, B. Mlodozeniec, J. Antorán, J. M. Hernández-Lobato Advances in Neural Information Processing Systems 2024
Warm Start Marginal Likelihood Optimisation for Iterative Gaussian Processes J. A. Lin, S. Padhy, B. Mlodozeniec, J. M. Hernández-Lobato Advances in Approximate Bayesian Inference 2024
Stochastic Gradient Descent for Gaussian Processes Done Right J. A. Lin*, S. Padhy*, J. Antorán*, A. Tripp, A. Terenin, C. Szepesvári, J. M. Hernández-Lobato, D. Janz International Conference on Learning Representations 2024
Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent J. A. Lin*, J. Antorán*, S. Padhy*, D. Janz, J. M. Hernández-Lobato, A. Terenin Advances in Neural Information Processing Systems 2023 (Oral Presentation)
Beyond Intuition, a Framework for Applying GPs to Real-World Data K. Tazi, J. A. Lin, R. Viljoen, A. Gardner, T. John, H. Ge, R. E. Turner Structured Probabilistic Inference & Generative Modeling Workshop at ICML 2023
Online Laplace Model Selection Revisited J. A. Lin, J. Antorán, J. M. Hernández-Lobato Advances in Approximate Bayesian Inference 2023 (Contributed Talk)
Function-Space Regularization for Deep Bayesian Classification J. A. Lin*, J. Watson*, P. Klink, J. Peters Advances in Approximate Bayesian Inference 2023
Latent Derivative Bayesian Last Layer Networks J. Watson*, J. A. Lin*, P. Klink, J. Pajarinen, J. Peters International Conference on Artificial Intelligence and Statistics 2021
Neural Linear Models with Functional Gaussian Process Priors J. Watson*, J. A. Lin*, P. Klink, J. Peters Advances in Approximate Bayesian Inference 2020